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ABSTRACT

In this paperwe reportrecentimprovementsin word error
performanceon a voicemail transcriptiontask. Last year,
thespeaker independentword error rate(WER) on thedev
testsetof theVoicemailTranscriptiontaskwasreportedat
35.45%[1]. This year, we reporta relative 20% gainover
this number. The improvementswereobtainedusingsev-
eral new algorithmsand an increasedamountof training
data.In additionto benchmarkingtheperformanceof these
algorithmson the Voicemail task, we have also evaluated
themon the Switchboardtask,andwe report theseresults
hereaswell. Finally, we alsopresentthe result of cross-
domainexperimentsto evaluatethe domain-independence
of theconstructedsystems.

1. INTRODUCTION

In this paperwe reportrecentimprovementsin transcribing
conversationaltelephonespeech,as typified by the Voice-
mail andSwitchboardtranscriptiontasks. Theseimprove-
mentsarea resultof somenew algorithmsand,in thecase
of Voicemail,alsodueto anincreasein theamountof train-
ing data. In the following sections,we describethecontri-
bution of several componentsto improving the word error
rate. The Voicemail transcriptiontask is describedin [1]
andrepresentssamplesof conversationaltelephonespeech
from a singlespeaker. The Switchboardtask is described
in severalpapersin [2] andrepresentssamplesof telephone
conversationsbetweentwo people.

One of the goalsof speechrecognitionresearchis to
designa domain-independentsystem(at leastasfar asthe
acousticmodelisconcerned)thatcandealwith varioustypes
of speechfrom the samecategory: for instancea system
built on Switchboardshouldbe able to provide the same
performanceon Voicemail as a systemtrainedon Voice-
mail. Generallyspeaking,this hasbeenan elusive goal,
asthe bestperformanceis usuallyobtainedby training the
acousticmodelson datadrawn from the samedomainas
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the testdata. In this paper, we alsoevaluatethe domain-
independenceof systemsbuilt with VoicemailandSwitch-
boardtrainingdata.

2. TRAINING/TEST DATA

Voicemail
The Voicemail training databasenow comprises70 hours
of speech,whichcorrespondsto approximately700kwords
of text. We will refer to this training databaseasT-VM1.
The sizeof the testingvocabulary is 11k words. The de-
velopmenttestsetfor this databasecomprises43 messages
(D-VM) and the evaluationtest set (E-VM) comprises62
messages.
Switchboard
We used2378of the2438SwitchboardI conversations[2]
asourtrainingset,andthe19conversationsusedin the1997
JohnsHopkins Workshopas the test set. This represents
around200hoursof speechand2 million wordsof text. We
will refer to this training databaseas T-SWB1 and to the
test databaseas E-SWB. The sizeof the vocabulary used
for testingwas18kwords.

3. SYSTEM DESCRIPTION

Thespeechrecognitionsystemusesa phoneticrepresenta-
tion of thewordsin thevocabulary. Eachphoneis modelled
with a 3-stateleft-to-right HMM. Further, we identify the
variantsof eachstatethatareacousticallydissimilarby ask-
ing questionsaboutthephoneticcontext in which thestate
occurs. The questionsare arrangedhierarchicallyin the
form of adecisiontree,andits leavescorrespondto thebasic
acousticunits thatwe model. A featurevectoris extracted
every10 ms,andwe modelthepdf of thefeaturevectorfor
eachleaf of the decisiontreewith a mixture of gaussians.
Thebaselinefeaturevectoris theMel cepstrumaugmented
with its 1st and2nd temporalderivatives. We will refer to
this asthecepstralfeaturespace.Someof thesystemsthat
we experimentedwith splicedtogether9 framesof cepstra
(thecepstraat thecurrentframe;4 framesbeforeandafter
thecurrentframe)andprojectingthesplicedfeaturevector



System FSP D #L #P Trg
S-VM1 f433 Ceps 39 2313 134k T-VM1
S-VM2 f708 Proj (1) 39 2313 134k T-VM1
S-VM3 f810l Ceps 39 2307 130k T-VM1
S-VM4 f526 MSG 26 3527 154k T-VM1
S-VM5 f844.v60 Ceps 39 2778 279k T-VM1
S-VM6 f844.v70 Ceps 39 2778 279k T-VM1
S-SWB1f844.v28 Ceps 39 3140 275k T-SWB1
S-SWB2f901 Proj (2) 60 3140 275k T-SWB1
S-VM7 f844.v50 Ceps 39 2778 279k T-VM1 +

T-SWB2
S-VM8 f844.v26 Proj (1) 39 2778 279k T-VM1 +

T-SWB1

Table1: Systemdescription

down to a lower dimension. We will refer to this feature
spaceastheprojectedfeaturespace.Additionally, onesys-
tem usesmodulationfiltered spectrogram(MSG) features
[11].
We summarizethe systemsthat we worked with in Table
1. Thecolumn

�����
indicatesthetypeof featurespace,�

indicatesthedimensionalityof thespace,��� indicatesthe
numberof leaves, � � indicatesthe numberof gaussians,	�
�

indicatesthe training datathat wasusedto build the
system.

4. FEATURE SPACE TRANSFORMATIONS

Lineardiscriminantanalysis[3] is a standardtechniquefor
dimensionalityreductionwith minimal lossof discrimina-
tion information. However, the LDA formulation makes
certainassumptionsthatarenot alwaystrue. Chief among
theseis the assumptionthat all the classeshave the same
covariancematrix.

Let ����������������� denotea sequenceof � dimensional
featurevectors,whereeachof thevectorsbelongsto a sin-
gle class�����! !"$#$#�#%"'&(� . Let )+*,".-�*,"%/0* denotethesample
count,meanandcovarianceof the �!132 class.Theclassin-
formationmaybecondensedinto two matricescalled

within-classscatter: 465  ) 78*:9 � )+*;/0*
between-classscatter: <=5  ) 78*:9 � ) * - * -?>*A@ - -?>

TheLDA objective functiontriesto find a
�

x � projection,B
, suchthattheratioof thefollowing determinantsis maxi-

mized &0C B!D 56E B < B > EE B 4 B > E (1)

System D-VM E-VM E-SWB
dev test eval test

S-VM1 32.26 39.61
S-VM2 30.23 35.26
S-SWB1 45.69
S-SWB2 38.8

Table2: HDA+MLLT

In [4] a HDA formulationwaspresentedthatmodifiedthe
LDA objective function( 1) to take into accountthediffer-
entcovariancematricesof thedifferentclasses

E B < B > E �F 7*:9 � E B / * B > E �HG (2)

Takingthelog of theaboveobjectiveyieldstheHDA objec-
tive functionI C B!D 5 78*:9 � @ )J*�KML,N E B /0* B > E�O )PKQL!N E B < B > E (3)

Thederivativeof this objectivemaybederivedto beR I C B!DR B 5 78*'S � @UT ) * C B / * B > D S � B / * O T )VC B < B > D S � B <
(4)

andquasi-Newtonmethodsmaybeusedto find theoptimal
solution.

Thediscriminationbetweenclassesprovidedin theHDA
featurespacerequiresthe useof full-covariancegaussian
modelsfor the classes.This is generallytoo computation-
ally expensive to be practical in most speechrecognition
systems;consequently, the modelsarereplacedwith gaus-
siansthat have diagonalcovariances. If the HDA feature
spaceis characterizedby dimensionsthat are highly cor-
related,the modelingapproximationinherentin the diago-
nalcovarianceassumptionnegatesany benefitthattheHDA
may have. Therefore,we apply a further transformation
(MLLT) thattriesto diagonalizetheHDA featurespace[5].
Theapplicationof this transformdoesnot changetheHDA
objective function value. The final featurespacethusob-
tainedwill be referredto as the HDA+MLLT space. The
classesthatareusedin thecomputationaretheleavesof the
decisiontree.

Theword error rateobtainedon theD-VM, E-VM and
E-SWBtestsetsfor thecepstralandprojectedfeaturespaces
areshown in Table 2. TheHDA+MLLT spaceis seento
providearelativeimprovementof 10-15%overthebaseline
cepstralspace.



5. BOOSTING GAUSSIAN MIXTURES

Boostingis a techniquefor sequentiallytraining andcom-
bining a collectionof classifiersin sucha way thatthelater
classifiersmake up for the deficienciesof the earlierones.
Many variantsexist [7, 8] but all follow thesamebasicstrat-
egy. Thereis a sequenceof iterationsandat eachiteration
a new classifieris trainedon a weightedsetof the training
examples. Initially, every examplegetsthe sameweight,
but in subsequentiterations,theweightsof hard-to-classify
examplesareincreasedrelative to the easyones. The out-
putsof theclassifiersarethencombinedin suchawayasto
guaranteecertainboundson bothtrainingandtestingerror
[8]. We reportresultshereusinganextensionto AdaBoost
thatwaspresentedin [6] andthatallows for largespeedups
in training time. Theextensionwasmotivatedby thescale
of the problem,wherewe have tensof millions of labeled
training pairs, thousandsof classes,and and hundredsof
thousandsof gaussiansthatmodeltheprobabilitydensityof
theclasses.

Theinput to theAdaBoostalgorithmis a setof labeled
trainingpairs, C�� � ".W � D , where � � representsthefeaturesas-
sociatedwith the X th exampleand W!� is its label. In our
applicationthe ��� areacousticfeature-vectorsandthe W,� are
context-dependentphonelabels.At eachiteration,Y , afunc-
tion Z 1 C��[":W D is learnedthatmapsa feature/labelpair into a
numberbetween\ and  . A weight, ] 1 , is assignedto each
classifier, andtheoutputof thecompositeclassifieris given
by I C3�[":W D 5 8 1

^ KML,N  ] 1_ Z 1 C��H".W D%`
In our implementationtheatomicclassifiersaremixturesof
gaussianswith onemixturefor eachleaf.

In AdaBoost,eachvector� � isassignedaweight, � 1 C3Xa":W D ,
that is relatedto theprobabilitywith which � � canbemis-
recognizedas W . This implies that the completeclassifier
hasto bedesignedin onestepduring thenext iterationus-
ing gradientdescenttechniques.This processwassimpli-
fied by the approximationin [6], which allowed the clas-
sifier to be designedin two steps. The weightsover all
classesfor agivenfeaturevectorweresummedup � 1 C3X D 5bdc � 1 C�X�".W D , and eachfeaturevectornow was associated
with a singleweight that is relatedto the probabilityof its
having beenmisclassifiedduring previous iterations. It is
now possibleto designgaussianmixturesindependentlyfor
eachclassusingonly the weightedexamplesof the class.
The Xe132 suchmixture modelsthe probability densityfunc-
tion of � for class W � , fHC3��ghW � D , and the classifieris now
simply definedas Z 1 C3�[":W D 5 ihjQk;l c$mbon ihjQk;l�p m . Themerit of this

approachis that theprocessof classifierdesigncanbepar-
allelizedandgreatlyspeededup. For details,the readeris
referredto [6].

E-VM TestSet
System 1stIt. 2nd 3rd 4th 5th
S-VM1 39.61 39.48 39.15 39.10 38.92

Table3: Boosting

D-VM TestSet
System Baseline Consensus
S-VM2 30.23 28.86
S-VM3 33.7 31.24
S-VM4 42.4 41.6
Rover 29.2 28.5

Table4: Consensusprocessing

The experimentalresultsobtainedby boostingthe S-
VM1 systemare summarizedin Table 3. The test set is
the E-VM test set. The word error ratesindicatea small
but consistentimprovementwith increasingnumberof iter-
ations.

6. CONSENSUS HYPOTHESIS PROCESSING

In all theexperimentsdescribedearlier, thedecodedhypoth-
esiswastakento bethe1-besthypothesisin thesearch.Re-
cently, [9] hasshown that betterperformancecan be ob-
tainedby consideringall the hypothesesproducedin the
searchand finding the “consensushypothesis.” In short,
theword graphproducedby thestandardhypothesissearch
procedureis first convertedinto a chain-like structureby
merging differentpathsin the graph. The componentsof
the chain representparallel sequencesof words. The cri-
terion for merging two pathsin the graphis relatedto the
time overlapbetweenthepathsandthe phoneticsimilarity
betweenthewordsequencesin thetwo paths.Subsequently,
themostprobablepath(or word sequence)in eachcompo-
nentof thechainis selectedandtheconcatenationof these
pathsrepresentsthe consensushypothesis.For further de-
tails, thereaderis referredto [9].

We evaluatedthe performanceof this techniqueon the
E-VM test set with the S-VM2, S-VM3 and S-VM4 sys-
tems. Subsequently, we combinedthe consensushypothe-
sesof thesethreesystemsusingROVER [10]. The results
arepresentedin Table 4. Thebaselineresultsrefersto the
1-besthypothesisof thecorrespondingsystem

7. CROSS-DOMAIN EXPERIMENTS

In this sectionwe examinetheperformanceon theSwitch-
boardtest setusingacousticmodelstrainedon Voicemail



System Training Test
Crossdomain-Cepstralfeaturespace

E-VM E-SWB
S-VM5 T-VM1 39.5 62.2
S-SWB1 T-SWB1 53.5 45.8

Crossdomain- Projectedfeaturespace
S-VM6 T-VM1 36.3 57.3
S-SWB2 T-SWB1 46.75 38.5

JointTraining- Cepstralfeaturespace
S-VM7 T-VM1 41.7 48.7

+ T-SWB2
JointTraining- Projectedfeaturespace

S-VM8 T-VM1 36.6 45.6
T-SWB1

Table5: WERperformancefor cross-domaincondition

andviceversa.Note,however, thatthelanguagemodeland
vocabularywereNOT mismatched.Superficially, asVoice-
mail andSwitchboardbothrepresenttelephonebandlimited
conversationalspeech,onewould expect the performance
on either test set to be independentof what databaseit is
trainedon,but theresultsshow thatthis is not thecase.The
differencein performancealsoappearsto dependonthefea-
ture spacethat is used.We presentresultsherefor several
systems.

From Table 5, the performancedegradationfrom the
matchedcondition (shown underlined)due to a mismatch
in theacousticmodelsrangesfrom 35-36%for thecepstral
featurespaceto 29-49%for theprojectedfeaturespace.The
degradationappearsto be worsefor the Switchboardtest
set. Training the acousticmodelson datafrom both do-
mainsdoesreducethedegradationto a largeextent6% for
the cepstralfeaturespace,to 1% for the projectedfeature
space).The resultsshow that the individual systemsbuilt
oneithertrainingdatabasearerelatively domain-dependent,
andthatour currentmodelingtechniquesarenot asrobust
asonemight desire,andshouldbethefocusof futurealgo-
rithm development.

8. CONCLUSION

We reportthefollowing:q overall reductionof 20%(relative)on Voicemaildev setq resultson theJHU 1997Switchboarddev testsetq useof a novel linear projection(HDA+MLLT) that im-
provesperformanceon the baselinecepstralfeaturespace
by 10-15%relativeon bothVoicemailandSwitchboardq useof boostingtechniquesfor gaussianmixturesthatyields
3%relative improvementq useof a consensushypothesisalgorithmthat providesa
3% relative improvementon both Voicemail and Switch-

boardq cross-domainexperimentsthatshow thesensitivity of sys-
tem performanceto training data q the crudeapproachof
makingthesystemmorerobustby trainingon theunionof
all datasetsdoesseemto work
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